Case study

Severe muscle–eye–brain disease is associated with a homozygous mutation in the POMGnT1 gene

Serap Teber*, Taner Sezer, Mehpare Kafali, M. Chiara Manzini, Berrin Konuk Yüksel, Mustafa Tekin, Suat Fitöz, Christopher A. Walsh, Gülhis Deda

Department of Pediatric Neurology, Ankara University School of Medicine of Pediatrics, 06510 Ankara, Turkey

ARTICLE INFO

Article history:
Received 27 March 2007
Received in revised form 18 June 2007
Accepted 25 June 2007

Keywords:
Muscle–eye–brain disease
POMGnT1
Congenital muscular dystrophy

ABSTRACT

Muscle–eye–brain (MEB) disease is an autosomal recessive disorder characterized by a broad clinical spectrum including congenital muscular dystrophy, ocular abnormalities, and brain malformation (type-II lissencephaly). Herein, we report on two Turkish siblings with a homozygous mutation in the POMGnT1 gene. A 6-year-old sibling has a severe form of MEB disease, which in some aspects is more suitable with the diagnosis of Walker–Warburg syndrome. However, the same mutation resulted in a less severe form of MEB in the older sibling, who is 14 years old. These two cases suggest that POMGnT1 mutations may cause MEB disease with different phenotypes even in the same family.

© 2007 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Congenital muscular dystrophies (CMD) are rare autosomal recessive diseases characterized by a brain malformation including neuronal migration defects, eye abnormalities, and muscular dystrophy. Different specific phenotypes have been described, many of them defined on molecular basis. Abnormal glycosylation of α-dystroglycan (α-DG) in the muscle and brain is a key feature of these disorders. The well-defined CMDs include Fukuyama CMD (FCMD), muscle–eye–brain (MEB) disease and Walker–Warburg syndrome (WWS). These syndromes have been associated with mutations of at least six genes (Table 1). It has become evident that some of the underlying genes may cause a broad spectrum of phenotypes. For example, O-mannosyltransferase-1 (POMT1) gene can cause not only WWS but also type-II limb girdle muscular dystrophy.

Lack of consistent ocular abnormalities in FCMD has allowed a clear clinical distinction of this syndrome, whereas the phenotypic distinction between MEB and WWS has remained difficult.

MEB disease is an autosomal recessive disorder characterized by congenital muscular dystrophy, ocular abnormalities, and brain malformation (type-II lissencephaly) and is seen mainly in Finland. Ocular abnormalities include severe congenital myopia, congenital glaucoma, pallor of the optic discs, and retinal hypoplasia. Most of the infants with MEB are physically ‘floppy’ from birth with generalized muscle weakness that includes the facial and neck muscles. Muscle biopsies show dystrophic changes and brain magnetic resonance imaging (MRI) reveal a pachygyria-type cortical neuronal migration disorder, hydrocephalus, flat brain stem, and cerebellar hypoplasia.

Herein, we report two Turkish siblings with MEB disease born to first cousin parents who have unique O-linked
mannose-β-1,2-N-acetylglucosaminyltransferase 1 (POMGnT1) gene mutation displaying different phenotypes.

2. Case reports

A 6-year-old boy living in an orphanage was admitted to our hospital with pneumonia and septic shock. He was born to first-degree cousin parents but no other information was known about the delivery or postnatal period. He had been diagnosed in a number of different hospitals with cerebral palsy, epilepsy, and malnutrition. As he had seizures and the EEG showed partial epilepsy, valproic acid therapy was initiated. He had been feed through a nasogastric tube for about 1 year. The father was known to be healthy but the mother was reported to be bedridden and mentally retarded. He had a 14-year-old sister and 11-year-old brother. The brother was reported to be healthy but the sister was motor and mentally retarded with eye abnormalities.

On clinical examination, he had severe mental retardation with no oral communication. He had truncal hypotonia and contractures of the lower extremities. He could neither maintain head control nor could sit without support. He could not turn from one side to other side in bed. Deep tendon reflexes were absent. There was no muscle atrophy or hypertrophy. Extrapyramidal signs were absent. He was also clinically blind with bilateral corneal clouding and microphthalmia on the right side.

Brain MRI showed lissencephaly, hypoplastic brainstem and cerebellar vermis, severe hydrocephalus, absent septum pellucidum, and thin corpus callosum. The white matter signal was increased especially in frontal areas, bilaterally. Also, persistant hyalinoid tissue was seen on the retrolental area of the left eye [Fig. 1, Table 2]. Serum creatine kinase level was 572 UI/l (nv < 172 UI/l). The electromyography (EMG) showed myopathic features. The peripheral blood chromosome analysis was normal. Muscle biopsy could not be done as a written consent could not be obtained from his parents.

After therapy for his pneumonia and septic shock, he was discharged from the hospital as his blood gas analysis returned to normal. We were informed that he died at the orphan house with acute respiratory insufficiency a few months later. His breathing had been assisted by the use of a respiratory machine.

His 14-year-old sister is still living in the orphan house. In contrast to her brother, she had moderate mental retardation and could speak single words. Her neurologic examination revealed truncal hypotonia. She had good head control and was able to sit with support. Her mobilization was attained by wheel chair. Deep tendon reflexes were hyporeactive. Ocular examination revealed bilateral cataracts and retinal dysplasia.

Brain MRI showed thickening of the cerebral cortex with shallow sulci, indicative of lissencephaly. Periventricular hyperintense areas on T2-weighed images and a decreased cerebral hemispheric volume were also noted. The MRI clearly showed the hydrocephaly and pontocerebellar hypoplasia [Fig. 2]. Serum creatine kinase level was 1200 UI/l and EMG showed myopathic changes.

3. Mutation analysis

Informed consent was obtained from their legal guardians in accordance with protocols approved by the Institutional
Review Board of Beth Israel Deaconess Medical Center and local institutions. Genomic DNA was extracted from peripheral blood lymphocytes using standard techniques. The SNP-based genome scan was performed at the Broad Institute (Cambridge, MA). Five hundred nanograms of genomic DNA were labeled and hybridized to Affymetrix GeneChip 250K StyI Arrays according to the manufacturer’s instructions. Genotyping results were analyzed using dChip software. Regions of homozygosity were visualized using the LOH function in dChip. For POMGnT1 sequencing, primers were designed for each exon including at least 50 base pairs of flanking intronic sequences. Primers and amplification conditions are available upon request. Amplicons were purified using Agencourt AMPure PCR purification solution (Agencourt Bioscience Corp., Beverly, MA). Capillary sequencing was outsourced to SeqWright (Houston, TX). Genome-wide screening was performed by hybridizing genomic DNA from the two affected children on Affymetrix 250K SNP chips. Since the patients were born from a consanguineous marriage, we first analyzed regions of homozygosity at known MEB loci. Large overlapping stretches of homozygosity, 29.7 cM for the affected boy and 19.7 cM for the affected girl, were found in the region containing the POMGnT1 gene on chromosome 1p34.1. For POMGnT1 sequencing, primers were designed for amplification of all exons and flanking intron sequences. Mutation analysis was performed by direct sequencing of the resulting amplicons. A transition (G > A) was identified at the splice donor site of intron 17 (ca. 1539+1 G > A) in both siblings. Removal of this splice donor site results in skipping of exon 17 and causes an in-frame deletion of 42 aa.11

4. Discussion

MEB disease is caused by mutations in the POMGnT1 gene and has a broad clinical spectrum. In the present case report, we have shown that mutations in POMGnT1 gene can cause a very severe phenotype like WWS.

It was difficult to make the initial diagnosis between MEB and WWS in the 6-year-old patient, because he had very severe motor and mental impairment and had eye abnormalities including cataract, microphthalmia which are more common in WWS. Further, he had extreme hydrocephalus, thin corpus callosum and absent septum pellucidum with lissencephaly which are more commonly attributed to WWS. He died at the age of 6, thus the life span was short when compared to that seen in the classical presentation of MEB. His 14-year-old sister, who had the same mutation, has a milder clinical presentation and MRI findings (Table 2).

Diesen et al. reported that both Finnish and non-Finnish patients with homozygous for the POMGnT1 mutation showed wide variation in their phenotypic spectrum, with the mildest clinical manifestations and the severe end of the clinical spectrum. However, our cases clearly show that POMGnT1 mutations may be associated with a very different phenotypic spectrum even in the same family.

<table>
<thead>
<tr>
<th>Table 2 – Clinical features of patients compared with cobblestone lissencephalies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom</td>
</tr>
<tr>
<td>Cortical abnormality</td>
</tr>
<tr>
<td>Hydrocephalus</td>
</tr>
<tr>
<td>White matter abnormality</td>
</tr>
<tr>
<td>Corpus callosum</td>
</tr>
<tr>
<td>Fused hemispheres</td>
</tr>
<tr>
<td>Absent septum</td>
</tr>
<tr>
<td>Cerebellar hypoplasia</td>
</tr>
<tr>
<td>Cerebellar vermis</td>
</tr>
<tr>
<td>Cerebellar cysts</td>
</tr>
<tr>
<td>Muscular dystrophy</td>
</tr>
<tr>
<td>Microphthalmia</td>
</tr>
<tr>
<td>Retinal defects</td>
</tr>
<tr>
<td>Anterior chamber abnormalities</td>
</tr>
<tr>
<td>High CK</td>
</tr>
<tr>
<td>Life expectancy</td>
</tr>
<tr>
<td>Motor function</td>
</tr>
<tr>
<td>Mental function</td>
</tr>
</tbody>
</table>

myopia and retinal dysplasia. They also showed that patients with mutations near the 5' terminus of the POMGnT1 coding region showed relatively severe brain symptoms, while patients with mutations near the 3' terminus had milder phenotypes. Two patients with atypical WWS had mutations near the 5' terminus. Our 6-year-old case had more severe clinical findings compared to these two patients including the inability to control their heads or to speak and severe ocular impairment. It is interesting that a mutation in POMGnT1 gene in our patient was near the 3' terminus.

We conclude that the POMGnT1 mutations can express themselves in severe MEB phenotype similar to WWS, so it might be better to classify CMD based on genetic rather than clinical criteria.

REFERENCES

6. Beltrán-Valero de Bernabé D, Currier S, Steinbrecher A, Celli J, van Beusekom E, van der Zwaag B, et al. Mutations in the POMGnT1-linked glycosylation of α-DG is the key defect in cobblestone lissencephalies. POMT1 is predicted to catalyze the first step in the O-linked protein mannosylation, the transfer of a mannosyl residue from dolichyl phosphate mannos to a serine or threonine residue in the target protein. POMGnT1 takes care of the second step by adding O-mannosylation of α-DG is seen in WWS and MEB patients with mutations in the POMT1 and POMGnT1 genes, respectively. The phenotypical spectrum of congenital glycosylation disorders linked to different POMT1 mutations have been considered much broader than initially anticipated like POMGnT1 mutations. Balci et al. described five patients with a distinct clinical phenotype of limb girdle muscular dystrophy, mild microcephaly and mental retardation without any structural malformations of brain. These cases were found to be homozygous for POMT1 mutation which were associated with a very severe clinical phenotype of WWS. Taniguchi et al. reported 12 patients with MEB outside of Finland who had a wider clinical spectrum including atypical or mild WWS phenotypes. In their report, there were two cases with atypical WWS phenotypes who had severe mental retardation head control and ocular manifestations including hyperintense areas. They also showed that patients with mutations near the 5' terminus of the POMGnT1 coding region showed relatively severe brain symptoms, while patients with mutations near the 3' terminus had milder phenotypes. Two patients with atypical WWS had mutations near the 5' terminus. Our 6-year-old case had more severe clinical findings compared to these two patients including the inability to control their heads or to speak and severe ocular impairment. It is interesting that a mutation in POMGnT1 gene in our patient was near the 3' terminus.

We conclude that the POMGnT1 mutations can express themselves in severe MEB phenotype similar to WWS, so it might be better to classify CMD based on genetic rather than clinical criteria.

Fig. 2 – (A) Sagittal T1-weighed MR image demonstrating hypoplastic brainstem and cerebellar vermis. (B) Coronal flair T2-weighed image demonstrating lissencephaly and enlarged lateral ventricles with periventricular hyperintense areas.